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INFINITE DIMENSIONAL DYNAMICAL SYSTEMS

by

Jack K. liale

ABSTRACT

An approach is outlined for the discussion of the qualitative thecory

of infinite dimensional dynamical systems. Retarded functional differential

equations and parabolic partial differential cquations are used to illustrate

the usefulness of the approach and the limitations of our present knowledge.




The purpose of this paper is to outline an approach to the development
of a theory of dynamic systems in infinite dimensions which is analogous to
the theory for finite dimensions. The first problem is to find a class for
which there is some hope of classification and yet general enough to include
some interesting applications. My goal has been to discover something about
a class which includes retarded functional differential cquations (RFDE),
certain types of neutral functional differential equations (NFDE), parabolic
partial differential equations (parabolic PDE) und some other special PDE's,
The underlying thecory of RFDE's and NFDE's can be found in Hale [7] and para-
bolic PDE's in Henry [14]. For some details of how these equations fit into
the abstract framework below, see Hale [8].

Let X, Y, Z be Banach spaces and let r - Cr(Y,Z), r > 1, be the
set of functions from Y to Z which are bounded and uniformly continuous
together with their derivatives up through order r. We impose the usual
topology on 2. (In applications, other topologies may be needed; tur cxample,
the Whitney topology.) For each f GEQT, let Tf(t) X=X, t -0, bea
strongly continuous semigroup of transformations on X. TFor each x € X, we

suppose Tf(t)x is defined for t > 0 and is ol in  x.

We say a point Xy € X has a backward extension if there is a
@ : (-2,0] - X such that ¢(0) = X, and Tf(t)m(l) = @(t+1) ftor O =t < -1,
1 < 0. If there is a backward extension ¢ through Xqs We define 'l‘f(t)x0 =

o(t), t < 0. Aset Mc X is invariant if, for each x € M, Tf(t)x is defined

and belongs to M for t € (-»,=). The orbit y+(x) through x is defined

t>0

as y+(x) = Tf(t)x.




Af = {x € X : Tf(t)x is defined and bounded

for t € (-»,o)}.

£ contains much of the interesting information about the semigroup ;
i
Tf(t). In fact, it is very easy to verify the following result.

The set A

Proposition 1. If Af is compact, then Af is maximal, compact, invariamt.

[f, in addition, all orbits have compact closure, then Af is a global ;ﬁ
attractor. Finally, if Tf(t) is one-to-one on Af, then Tf(t) is a |
continuous group on Af.

The first difficulty in infinite dimensional systems is to decide how
to compare two semigroups Tf(t), Tg(t). It seems to be almost impossible to
make a comparison of any systems on all or cven an arbitrary bounded sct of
X. If A_. is compact, Proposition 1 indicates that all essential information

f

is contained in Af. Thus, we define equivalence relative to Ag

' Definition 2. We say f 1is equivalent to g, f ~ g, if therc is a homeo-

morphism h: Af > Ag which preserves orbits and the sense of direction in time.

- We say f is structurally stable if there is a neighborhood V of f in

er such that g € V implies g~ f. We say f 1is a bifurcation point if
Y D

f 1s not structurally stable.
The basic problem is to discuss detailed properties of the sect Ag and
to determine how Af and the structure of the flow on Af change with f.

If A

£ 1s not compact, very little is known at this time. [t becomes

important therefore to isolate a class of semigroups for which Af is compact.




If Tf(t) is an a-contraction for t > 0 and Tf(t) is compact dissipative,
then it was proved by Hale and Lopes [l1] (see, also, Hale [9], Massatt [27,28])
that Af is compact, uniformly asymptotically stablc and attracts bounded sets

if orbits of bounded sets are bounded. We do not define an a-contraction, but

a special case which is very important in the applications is

Te(t) = Sp(t) + Ug(t), t > 0,

where Sf(t) is a strict contraction for t > 0 and Uf(t) is completely

continuous for t > 0. Compact dissipative means there is a bounded sct B in

X sqch that for any compact set K in X, there is a tO = tO(K,B) such that

Tf(t) KecB, t >ty
If Tf(t) is completely continuous for t > r for some r > 0, then

it was shown by Billotti and LaSalle [1] that Af is compact if T .(t) is

point dissipative. Other conditions for Af to be compact which are very useful

in the applications have been given recently by Massatt [27,28].

Before procceding further, we give two examples of semigroups which can

.4
z
. 4

be used as models to illustrate several of the ideas.
Suppose u €1Rk, x € an, Q is a bounded, open set in R" with smooth
boundary, D 1is a k x k constant diagonal, positive matrix, 4 is the

Laplacian operator, and consider the equation

u, - DAu = f(x,u,grad u) in Q

u =0 on 3N .

2,

2
(21 be

Other boundary conditions could also be used. Let W = wé'z(n) nw




the domain of -4 and let X = W%, 0 < a < 1, be the domain of the fractional
power (-8)% of -A with the graph norm, Under appropriate conditions on
f,«, this equation generates a strongly continuous semigroup Tf(t) on X

which is compact for t > 0. In this case 2" = c¢'(2 «RE x RKP

RNy, 1f f

is independent of x, then 2% = ¢T®* xR RY). if £ Jdepends only on u,

then Qr = Cr(JRk,]Rk). In each of these cases, the theory will be diffcrent.
As another example, suppose r >0, C = C([—r,ﬂj,]R"), Qr = (Ir(C,]R“),

r > 1, and consider the RFDE,
x(t) = f(xt)

where, for each fixed t, Xe designates the restriction of a function x us
xt(e) = x(t+6), -r < ¢ < 0. For any @€ C, let x(y)(t), t > 0, designate
the solution with xo(q)) = p and define Tf(t)(p = xt(u)). If this function is
defined for t > 0, then Tf(t) : C+C 1is a strongly continuous semigroup
and Tf(t) is completely continuous for t > r 1if it takes bounded sets to

bounded sets.

For differential difference equations

1

x(t) = f(x(t),x(t-1))

x(t)

i

f(x(t-r))

the space " s respectively, cm" « RO RN, "®m" rM.
We now begin our discussion of the set Ag. There are few gencral
results which are independent of f. Ilowever, there is an important one con-

cerning the dimension.




Theorem 3. (Mallet-Paret, Maii€) If A. is compact and D Te(t)x is the

sum of a contraction and a completely continuous operator, then Af has

finite limit capacity. In particular, Af has finite Hausdorff dimension.

Mallet-Paret [21] proved the part on finite Hausdorf dimension for the

case in which X 1is a Hilbert space. Mané [24] proved the general case, but
a different type of analysis was required.

This result has some important implications if one uses the results
of Cartwright [3,4] on almost periodic functions. In particular, one can

prove the following result,

Corollary 4. If A_. is compact and the hypothesis of Theorem 3 is satisfied,

f
then there is an integer N = Nf such that, if Tf(t)x is almost periodic in

t, then Tf(t)x is quasiperiodic with frequency base of dimension <« N.

Landau and Lifschitz have proposed a principle for the onset of turbulence
which consists in the successive introduction through bifurcation of independent
frequencies in the oscillatory motion. If the motion is known to be described
by the Navier-Stokes equations, then the results of Ladyzenskaya [17] show that
Af is compact and the hypothesis of Theorem 3 is satisfied. Thus, the Landau-
Lifschitz principle cannot be valid as a consequence of Corollary 4.

Other than Theorem 3, there are no general results on Af. The research
has foliowed along the lines of considering special types of equations which
lead to the semigroup Tf(t); in particular, functional differential cquations
and parabolic partial differential equations. On the other hand, to cxplain

some of the results that are known, it is convenient to pose general questions.

Q.1. Is Tf(t) one-to-one on Af generically in f?




Q.2. ££ f 1is structurally stable, is Tf(t) one-to-one on Af?

Q.3. When is A, a manifold or a finite union of manifolds?

f

be embedded in a finite dimensional manifold generically

Q.4. Can A

f

in f£?

Q.5. For each x € Af, is Tf(t)x continuously differentiable in

t € R?

Q.6. Are Kupka-Smale semigroups generic?

Q.7. Are Morse-Smale systems open and structurally stable?

Before discussing specific results, one important observation must be
made. All of the above questions are posed for Af. This set is much smaller
than X and, thus, the questions have a better chancc of being answercd.

Also, Q.5 1is not even meaningful on the whole space for scveral important
applications.

For Q.1, one-to-oneness of Tf(t) on Af, there 1s no general result
known. However, for retarded functional differential equations and special
types of neutral functional differential equations, it follows from Nusshaum
{33], Hale [7] that Tf(t) is one-to-onec on Af it f is analytic. This is
proved by showing that Tf(t)x is an analytic function of t for each x € Af.
Since (Tf(t)x)(e) = (Tf(t+e)x)(0) for all ¢, this implies x € C([-r,O]JRn)
is also analytic. It is easy to construct examples where € is analyvtic in a
retarded functional differential equation and Tf(t) is not one-to-one on C.
A trivial example is x(t) = 0, t > 0, x(t) = @(t), t € [-1,0], @ € C. Non-
trivia)l examples may be found in Hale [7].

For some types of parabolic ecquations, the results of Henry [14], Miller [32]




(see Manselli and Miller [25] for further references) imply that ff(t) is
one-to-one on all of X. For these equations, it would be interesting to study
more detailed properties of the solutions on Af. For example, if f is
analytic, when are the solutions of u, = Au + f(u) in a bounded domain,
with some boundary conditions, analytic in t and the space variable? A
personal communication from D. Henry for one space variable shows that, 1in
one space dimension, this analyticity holds for all solutions on the unstable
manifold of a hyperbolic equilibrium point. The same conclusion is probably
true for Af.

In a personal communication, J. Mallet-Paret has given an examplc where
Tf(t) is not one-to-one on Af. However, it is not structurally stable and,

thus, the question Q.2 is posed.

For retarded functional differential equations defined on a compact
manifold M without boundary, which are close in some sensce to an ordinary
differential equation (for example, a differential difference cquation with
onc delay which is small), Kurzweil [16] has shown that Af is difteomorphic
to M. Oliva [35] has generalized these results giving other conditions which
imply Af is diffeomorphic to M. The corresponding problems for parabolic
equations have not been discussed. However, there should be some analogue.

For certain gradient systems of parabolic equations, Henry [14,15] huas
shown that Af is the union of a finite number of manifolds.

If it is known that the number of critical points is finite and the

w-limit set of every orbit is a hyperbolic equilibrium point, then Af will be
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the union of a finite number of manifolds; namely, Af==L£W¥(ui) where
W?(ai) is the unstable manifold (necessarily finite dimensional) of the
equilibrium point ;-

For Q.5, the differentiability of Tf(t)x in t for x € Af is
known for some special cases. For RFDE's, this is obviously true since
Tf(t)x is defined for t < 0. We remark that this is true for x € l\f and
not for every x € C. For certain NFDE's, it is also known to be truc (sce
Hale [7]).

The results in PDE's generally relate to the differentiability of
Tf(t)x for x 1in a very large class (see Marsden and McCracken [26]). 1t
should be possible to obtain better results if one restricts x to be in Af.

In a personal communication, O. Lopes has shown that periodic orbits
are always continuously differentiable for the abstract semigroups Tf(t) =
Sf(t) + Uf(t) above.

In studying the properties of semigroups Tf(t) which are generic in
£, the "size" of the space of functions f plays an important role. For ex-
ample, if one is attempting to prove that a periodic orbit may be assumed to
be hyperbolic generically in f, then the space of functions must bec large
enough to move the characteristic multipliers that are on the unit circle in
any direction whatsoever by an appropriate variation of f. The same difficulty
arises with any other property being discussed. When there arc more restric-
tions on the vector field, the characterization of properties which are generic
becomes more difficult. We are certainly familiar with similar diftficulties in

finite dimensional problems; for example, restrictions to vector ficlds corres-

ponding to Hamiltonian systems, electric circuits, lcarning models, population




models, etc. In infinite dimensional systems, there is even more tlexibility

i in the choice of the vector field. These restrictions sometimes may be

natural or may be imposed to make the problem easier to discuss. Also, cach
system has a specific role to play in applications.
For retarded functional differential equations, for example, one could ,

be considering either of the following equations

¥ x(t) = £(x,)
x(t) = £(x(t),x(t-1))
x(t) = f(x(t-1))

with, respectively, f € C'([-1,0]1,R™), f€ C"®" xR"R™), f € c"@®* r"). ALl

n

of these equations are retarded functional differential equations x(t) F(xt) i
with F, respectively, being F(@) = f(@), F(@) = f(o(0),0(-1)), F(go) = flo(-1))}.
For the first two cases, Mallet-Paret {21,22] has shown that the Kupka-Smale
systems are generic.
For the third case, i(t) = f(x(t-1)), nothing is known except

! that one may assume the equilibrium points are hyperbolic generically.

This is especially interesting since this equation is certainly thc onc

that is most often discussed in the literature as far as the existence

of periodic orbits is concerned (see Nussbaum [33] for references). On the

other hand, in many of thc applications, this equation arose through a trans-

formation of variables of an equation of the form

y(t) = ay(t) + g(y(t-1)).

Perhaps one can prove that the Kupka-Smale systems arc generic in this class.
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For parabolic equations, very little is known about Kupka-Smalc svstems.

There are even several technicai difficulties that arise in the discussion of
hyperbolicity of the equilibrium solutions. To be more specific, consider

the scalar, one-dimensional parabolic equation

=
]

¢ u .t g(x,u), 0 <« x <1

u=0 at x=0, x=1,

where g € CrGR xRJR). 1In this case, it is not difficult to show that the
equilibrium points are hyperbolic generically in g. The recason for this is
the fact that the function g is allowed to depend upon x.

On the other hand, if g(x,u) = f(u) where f € CrﬂRJR) is independent
of x and uo(x) is an equilibrium point for fo, then the lineur variational
equation about u® depends on x. One must now prove that it is possible to
move the spectrum of this linear operator by choosing f(u) in a neighborhood
of fO(u) independent of x. This is a nontrivial problem. Smollicr and
Wasserman [37] have given an example where hyperbolicity can be determined in a
class of f(u). Brunovsky and Chow [2] have shown that it always occurs
generically in f. More precisely, suppose u(x,n,f) is the solution of
u Lt f(u) = 0 with u(0) =0, ux(O) = n and let Df = {n : u(x,n,f) is zcro

for some x > 0}. For any n € Df, let T(n,f) > 0 be the first positive

zero of u(x,n,f). Brunovsky and Chow [2] prove the following result.

Theorem.4. There is a residual set & < {space of c? functions f endowed

with the Whitney topology} such that, for any f € &, the function T(n,f)

is _a Morse function. Furthermore, there is a residual set ¢'c g such that,

for each f€¥', if T(n,f) = 1I/n for some integer n = 1,2,..., then

aadoad
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aT(n,f)/on # 0. In particular, the equilibrium points of

c
il

u _ +f(u) 0 <x <1
t XX

()
u=0 at x =0,1

are hyperbolic generically in f.

This theorem also implies that, generically in f, the bifurcation
of equilibrium points occur as saddle-node bifurcations for Eq. (1)

It does not seem to be possible to extend the proof of Brunovsky and
Chow [2] to several space dimensions. Also, in several space dimensions, one
probably should include the domain Q with the vector field f in the
discussion of generic properties since the shape of Q sometimes determines
the multiplicity of eigenvalues.

The discussion of the genericity of the property of the transversal
interse~tion of stable and unstable manifolds for general parabolic cquations
has no. been considered. Henry [14] has given specific examples where he has
shown that this property does hold. These examples are also structurally stable.

For the above scalar one-dimensional parabolic equations on a bounded
interval, no one has given an example where the equilibrium points are hyper-
bolic and the stable and unstable manifolds intersect nontransversally. After
spending some time trying, unsuccessfully, to construct such an example, T con-
jecture that no such example exists. If this is the case, then these cquations
are Kupka-Smale if and only if the equilibrium points are hyperholic. Further-

more, the only way the topological structure of the flow can change on a generic

set of f is through saddle-node bifurcations from the result of Brunovsky and
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Chow. Even if the above conjecture is generally false, it would be interest-
ing to characterize those f for which it is true.

A vector field f 1is Morse-Smale if it is Kupka-Smale with a finite
number of critical points and periodic orbits with the sct of nonwandering
points Q(f) equal to the set of critical points and periodic orbits. In
this case, Af should be the union of the unstable manifolds for the critical
points and periodic orbits. It is not known if such a system is structurally
stable.

One can define Axiom A as in finite dimensions and it would bc very
intercsting to prove that the analogue of the Smale decompousition theorem holds.

Let us now give some simple examples to illustrate several of the

remarks above. Consider the scalar one-dimensional parabolic equation

u, = u__ + A(u-us), O<x<m7w, t>0
t T Uxx = 2)

u=0 at x =0,7
where 1 is a real parameter. This equation defines a strongly continuous
semigroup Tx(t), t >0, on Hé(O,n) {see, for example, Henry [14]).

If

¥ S 2 4
Vi) = Jo[éw; A% - &) s

for @€ Hé(o,n), then V(u(t,-)), the derivative of V along the solutions

of (2), satisfies
. “2
V(u(t,*)) = -[ u_dx < 0.
ot~

This implies every solution of (2) is bounded for t > 0. Also, every bounded

orbit has compact closure which implies the w-limit sect exists. By the




(e s ss e £0

TR, WISEOY

7 aatinilatiir

-13-

invariance principle, the w-limit set of each orbit belongs to the set of

equilibrium points; that is, a solution in Hé(o,n) of the equation

0=u__ + A(u-us), 0 <x<m,
XX

[+
]

0 at x = 0,w.

This result was essentially proved by Chafee and Infante [5]. It is also
known that the w-limit set of each bounded solﬁtion (even for general vector
field §(u)) consists of only one equilibrium point (see Matano [30], Halc
and Massatt [12]).

The next step is to analyze how AA’ the maximal compact invariant
set,depends upon ). The eigenvalues of the linear variational equation for
the zero solution are xn = n2, n=1,2,... . At each An’ two hyperbolic
solutions w;,<p; bifurcate from zero. Henry [14] proves that these are the

only points of bifurcation and, for An < X <A there are cxactly 2n+l

n+l1?

equilibrium solutions with the unstable manifolds w“(w;), wu(wg) of qg, qﬁ

having dimension j - 1. In this interval of ), the unstable manifold w(0)

of 0 has dimension n.

Let EA be the set of equilibrium points for a given . For

An < A< An+l’ the set AA is given by AA =[40€EANU(¢0 = closure of w“(U) R
and has dimension n. If the stable and unstable manifolds of the equilibrium .
points always intersect transversally, then Eq. (2) is structurally stable. é
Henry proves this is the case for 0 < X < 1, 1 <X <4, 4 <) <9, % .\ 216, }
For the latter interval, the oddness of f(u) = u - u3 was cxploited. The other E
cases hold for general f(u).

It is the belief of the author that the transversal intersection property
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always holds and the proof of this fact must exploit more detailed properties

of the solutions of Eq. (2). The recent results of Matano [31] on the change

of complexity of solutions with increasing time perhaps could play a role und
do, in fact, make it easier to obtain the results of !lenry [14]. 1t is reason-
able to refer to Eq. (2) as a gradient flow since formally ﬁt=-grad V(u) in
Hé(O,W). One can define gradient flows in several space dimensions and vcctor
functions u (see Henry [14]). It would be very interesting to know if

gradient Morse-Smale systems are open and dense. No results in this direction

seem to be available.

The scalar one-dimensional equation (2) behaves qualitatively as a
scaldar ordinary diffcrential equation with the analogy being complete if we
knew that stable and unstable manifolds for hyperbolic equilibria always inter-
sect transversally. In several respects, retarded functional differentiul
equations gencrate semigroups which have several properties in common with
parabolic equations. However, in detail, these equations behave quite different-
1y with the retarded cquations having a more complicated orbit structure. We
give an example to illustrate these remarks.

Consider the scalar equation

0
x(t) = - f a(-8)g(x(t+8))ds (Y
-1
2 2 x
where g € CC®RR), a € C°({0,1],R), G(x) = [ g~ as [x] =, a(l) = 0,
0

a(s) » 0, a(s) < 0, 4(s) » 0. We consider Eq. (3) for initial data in C({-1,0]1R).

For Eq. (4), Levin and Nohel [20]} exhibited a Liapunov function

[ ST

0 0 5
V(®) = G(v(0)) - f a(-e)U g(m(s))dSJ de
-r <]
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whose derivative V along the solutions of (4) is given by

9

. 1. 2 1 0 ¢ -
V(p) = Ea(r)[ g(w(o))dﬁ]" -3 f ﬁ(-u)[J g(w(s))dS]'d“ 2o
-r v

Ly
Using the invariance principle, one can then prove the following result (see .
llale [7]).

Theorem 5. Every orbit of Eq. (4) is bounded and has an y-limit set. If ¢

has isolated zeros, then

(i) If there is an s such that #(s) > 0, then the w-limit set

of any orbit is a constant function corresponding to a zero of g;

(ii) If a(s) =0 for all s and a # 0, then the ,-limit set of any

. orbit is a periodic orbit of period 1 generated by a - beriodic

solution of the ordinary equation

X + a(0)g(x) = 0.

} Let us consider first a special case of (i); namcly, i(s) ~ 0 for

S s € (0,1), and the zeros @) < a, <reec %ok el of g are simple. Lot l\“'g

4

be the attractor for Eq. (4). We want to study the dependence of A L, oon g,

U

o keeping a fixed. One can show that each equilibrium point is hyperbolic,
“°j*l are stable, j = 0,1,...,k, a2j are saddle points with unstable
manitold Wu(u,j) having dimension one, j = 1,2,....k. Thus, the attractor

2k+l ”

. u . . .
Aa,g = L)s=1 W(a,) is one dimensional.

: The basic question is the following: to which equilibrium points Jo

the orbits on an unstable manifold w“(u,j) tend? Is it always truc that these

orbits tend to a,. and a,. ., ? Surprisingly, the answer to the latter
2j-1 2j+1 | gly

ppuya .
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questijon is negative and there can exist saddle-connections. This meuns the
topological structure of the flow can change without having a bifurcation of
equilibrium in contrast to what we believe is happening in the scalar once-
dimensional parabolic Eq. (1). To state a precise result, suppose K = 2,
that is, there are five simple zeros of g, Ay S ay < ug €y ap If the

-

symbol a’j(ak’ul) designates that the saddle point %3 is comnected by

its unstable manifold to By sty then the orbit structure on Aa 2 is

detcermined by a pair [dz(ak’ugj’ u4(um,an)]. Hale and Rybakowski |13} have
shown that each of the following orbit structures can be attained by choosing
g appropriately in the above class:

lu‘Z(al’“s)’ ’11(113)"'5)1

[uz(al,ad), u4(113,a5)]

[az(ul ;‘15): u4((’-3,a5)]

[“2("111‘15) » u4(u:)a5)]

[uz(al,a3), a4(a1,as)].

A K g bt V. ) g,

’

The first case corresponds to the natural order of thc reals on Aa g; the
second and fourth cases correspond to saddle connections; the third and tifth
cases reverse the natural order of the reals. The first, third and fyitth

cases remain for small pcrturbations of g. Although the second and fourth
cases seem as if they should not remain after appropriately small perturbations
of g, but the authors have been unablie to prove this fact and thus, the

question is open: Is the set of g for which saddle-connections exist nongencric?

Let us now suppose that a(s) = ao(s) is linear and, in particular,




e e e

t _”_..‘?,

R g

e D okl St

A S

s
that ao(s) = In7(l-3). Also, suppose g is restricted to the class of

functions such that xg(x) > 0 for x #0, g'(0) = 1. Then the lincar ]
variational equation about x = 0 has two ecigenvalues on the imaginary axis
with the remaining ones having negative real parts. In this case, it 1s

nutural to discuss the bifurcation of periodic orbits from zero which arise

by small variations in a, or g. To do this, one must compute the hifurca-
tion function at (ao,g) and determine the first nonvanishing coefficients

in the Taylor expansion. The generic Hopf bifurcation corresponds to the

coetficient = of the cubic terms being # 0. 1t has been shown hy
0n’e
Hale {10] that . g = 0 for all g in the above class and, therctore, a
0’

gencric Hopf bifurcation can never occur. It is not known if there cver exist

any coeftficient in the Tavlor serics of the bifurcation function which is not
zero.

The two preceding examples illustrate clearly that importunt questions
in the qualitative theory of infinite dimensional systems arise in the simplest
ot svstems. It is not easy to outline a general direction of rescarch that o
should be pursued. On the other hand, it is clear that one should tirst |
determine the extent to which infinite dimensional systems share the general
qualitative properties that are known for ordinary differential cquations; ftor
cxample, the genericity of Kupka-Smale systems, the structural stabilaity
propertics of Morse-Smale systems, the decomposition thecorem of Smale for
systems that satisfy Axiom A, etc.

The preceding discussion shows that thesc questions are difficult in

the most elcmentary examples. Examples of this type nced to be discussed in

great detail in order to develop the methods and intuition to procced to more
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general cases., In scalar one¢-dimensional parabolic cquations above, for
instance, important properties of the svstem werc not being uscd extensively

- in particular, the maximum principle. What role, if any, does it plav an

these qualitative investigations?

The example of the retarded ecquation exhibited tlows with 4 more com
plicated qualitative behavior by the introduction of saddle conncctions,
Perhaps this is to be expected since the equation must define a flow in
infinite dimensions. On the other hand, so did the parabolic equation. What
makes the returded equation more complicated? What types of flows can be
generated by 4 scalar retarded equation?

Very complicated chaotic type of motions have been observed in
applications of svalar retarded equations (see, for cxample, Lusota and
Wazewska-Czyzewska [19], Lasota [18], Glass and Mackey [0]). Peters {sof,
Walther [38) have actually proved that chaos occurs in cquations

x{t) = f(x(t-1)) for some nonlinear functions f. Tt should not be surprising

that complicated dynamics might occur since mappings on the interval oxhibit

such behavior. However, this is purc speculation and the process invelved is

not understood. For example, consider the equation
x(t) = x(t) - £ (x(t-1)) (5)
where fx(x) depends on a real parameter X. Supposc that the interval map

x(t) = f,(x(t-1)) has successive bifurcations of periodic points through

period doubling as ) increases and, for somc valuc of ), "chaotic"” motion

occurs.  Under what conditions do these periodic points correspend tu periodic

A version of this

orbits of (5) and when does a chaotic motion occur in (5)°?
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problem presently is being studied by Chow and Mallet-Paret for the equation

ux(t) = x(t) - f, (x(t-1)) (6)

where u is a small parameter. Preliminary investigations indicate that the

bifurcation phenomena in (6) is much more complicated than the corresponding

one for the interval map.
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